חוקרים גילו שהדרך המקורית להאיץ תהליכים כימיים היא אתחול מחדש


מחקר
חוקרים גילו שהדרך המקורית להאיץ תהליכים כימיים היא אתחול מחדש

מחקר חדש של אוניברסיטת תל אביב מגלה "שהחוקיות" שנכונה לעולם המחשבים, נכונה כנראה גם לעולם הכימיה. החוקרים גילו שכדי להאיץ דגימות של סימולציות כימיות, כל מה שצריך לעשות, הוא לעצור אותן ולאתחל מחדש (Restart).
המחקר נערך בהובלת הדוקטורנט אופיר בלומר, בשיתוף פעולה עם פרופ' שלומי ראובני וד"ר ברק הירשברג מבית הספר לכימיה בפקולטה למדעים מדויקים ע"ש ריימונד ובברלי סאקלר. המחקר פורסם במגזין היוקרתי Nature Communications.
החוקרים מסבירים כי סימולציות דינמיקה מולקולרית הן כמו מיקרוסקופ וירטואלי. הן עוקבות אחר התנועה בזמן של כל אחד מהאטומים במערכות כימיות, פיזיקליות וביולוגיות כמו חלבונים, נוזלים וגבישים. הן מספקות תובנות אודות מגוון רחב של תהליכים, ומשמשות במספר יישומים טכנולוגיים, בהם פיתוח תרופות חדשות. אולם, הסימולציות מוגבלות לזמנים הקצרים ממיליונית השנייה, ולכן לא מסוגלות לתאר תהליכים המתרחשים לאט יותר, כמו קיפול חלבונים והיווצרות גבישים. מגבלה זו מוכרת כבעיית סקלת הזמנים, והיא אחד האתגרים הגדולים בתחום.
"במחקר החדש הראינו כי ניתן להתגבר על המגבלה באמצעות אתחול אקראי של הסימולציות (stochastic resetting)", מסביר הדוקטורנט אופיר בלומר. "במבט ראשון, הדבר נראה מנוגד לאינטואיציה - כיצד יתכן שהסימולציות יסתיימו מהר יותר אם מתחילים אותן מחדש? אבל כשבוחנים את הנושא לעומק מתברר שהתשובה נעוצה בכך שאם נחזור על הניסוי בסימולציה פעמים רבות, הזמן שייקח לו לסיים ישתנה מאוד. לפעמים יסתיים מהר, ולפעמים יתקע במצבי ביניים זמן ממושך. אתחול הסימולציות מונע מהן להיתקע במצבי ביניים אלו, ומקצר את הזמן הממוצע לסיום התהליך".
במסגרת המחקר, החוקרים שילבו את האתחול האקראי עם מטאדינמיקה, שיטה פופולרית לסימולציות של תהליכים איטיים. השילוב איפשר האצה רבה יותר מכל אחת מהשיטות בפני עצמה. יתרה מזאת, מטאדינמיקה זקוקה לידע מוקדם רב על התהליך כדי להצליח להאיץ את הסימולציות. השילוב עם אתחול אקראי מקטין תלות זאת מאוד, וחוסך לכימאים מאמץ רב כדי להריץ אותן. לבסוף, הראו החוקרים כי השילוב מאפשר ניבוי מדויק יותר של הקצב של התהליכים האיטיים. השיטה המשולבת שימשה בהצלחה להאצת הדגימה של קיפול חלבון במים, ובעתיד תאפשר להאיץ סימולציות של מערכות גדולות אף יותר.

מחקר
כריתת היערות באמזונס עשויה להקטין את כמות סופות הרעמים ולפגוע ביער הגשם שמספק לנו חמצן

חוקרים מאוניברסיטת תל אביב מצאו לראשונה כי בעשורים האחרונים, בעקבות הפעילות המתמשכת של כריתת היערות באגן האמזונס, ירד משמעותית מספר סופות הרעמים באזור זה, והצטמצם המרחב שבו הן מתרחשות. לדבריהם, מדובר בממצא מפתיע: "במרבית האזורים בעולם ההתחממות הגלובלית גורמת לעלייה במספר סופות הרעמים, אך במחקר זה גילינו שבדיוק באזורים בהם בוראו היערות, מספר הסופות דווקא ירד. הממצאים הללו מדאיגים מכיוון שירידה בכמות הסופות מביאה לירידה בכמות הגשמים, אשר בתורה גורמת לפגיעה נוספת ביערות – וחוזר חלילה. מדובר בתהליך מסוכן של היזון חוזר, שעלול לפגוע קשות ביערות שמספקים לנו חלק ניכר מהחמצן באטמוספירה וקולטים חלק גדול מהפחמן הדו-חמצני שנפלט על ידינו לאטמוספירה."
המחקר הובל על ידי פרופ' קולין פרייס והסטודנט ראם בקנשטיין מהחוג לגיאופיזיקה בבית הספר לסביבה ולמדעי כדור הארץ ע"ש פורטר באוניברסיטת תל אביב. המאמר פורסם בכתב העת Quarterly Journal of the Royal Meteorological Society (QJRMS).
"יערות האמזונס הם יער הגשם הטרופי הגדול ביותר בעולם, והם ממלאים תפקיד קריטי בוויסות אקלים כדור הארץ," מסביר פרופ' פרייס. "יערות אלה אף מכונים 'הריאות של כדור הארץ', מכיוון שבאמצעות תהליך הפוטוסינתזה הם מייצרים חלק משמעותי מהחמצן באטמוספירה וסופגים ממנה כמות גדולה של פחמן דו-חמצני – גז חממה שיש לו תרומה משמעותית לשינויי האקלים. בנוסף, יערות הגשם עצמם מייצרים גשם: העצים פולטים לאוויר אדי מים שהופכים לגשם מקומי, וגם נישאים על ידי הרוח ומביאים גשם למקומות מרוחקים."
עם זאת החוקרים מציינים כי תהליכים חשובים אלה מצויים כיום בסכנה בשל פעילות נרחבת של בירוא יערות באמזונס. "כשהאדם כורת עצים ומפנה שטחים לצרכים מגוונים: שימוש בעץ עצמו, חקלאות, פיתוח תשתיות, כריית מינרלים, ועוד. למעשה, ב-30 השנים שבין 1990 ל-2020 חוסלו באגן האמזונס יערות ששטחם הכולל גדול מיבשת אירופה כולה. הרס היערות גורם לפגיעה ברמת החמצן ולעלייה בגזי החממה באטמוספרה, וגם לשיבוש בגשמים שעלול להגיע לכדי בצורת באזורים מסוימים. בנוסף, לעתים קרובות העצים שנכרתו נשרפים, וכך נפלט לאוויר פחמן דו-חמצני נוסף, שמגדיל את הנזק הסביבתי".
במחקר זה, הראשון מסוגו בעולם, ביקשו החוקרים לעקוב אחר שינויים בהיקף סופות הרעמים באגן האמזונס בעשורים האחרונים. בהיעדר נתוני סופות רעמים מהאמזונס שחוזרים עשרות שנים אחורה, בנו החוקרים מודל אמפירי המסתמך על פרמטרים אקלימיים מהמרכז האירופאי ERA5, שאוסף נתונים מאז 1940, ולצד נתוני סופות רעמים שנאספו באמצעות רשת עולמית של חיישנים לאיתור ברקים שנקראת WWLLN -Worldwide Lightning Location Network.
"ברק הינו תוצאה של שדה חשמלי עצום שנפרק בבת אחת, ומשדר גלי רדיו שניתן לקלוט אותם גם במרחק של אלפי קילומטרים," מסביר פרופ' פרייס. "החיישנים של רשת WWLLN פרוסים ב-70 מוסדות מחקר בכל העולם, והם קולטים וממפים סופות רעמים בכל מקום על פני כדור הארץ, בזמן אמת וללא הפסקה. גם כאן באוניברסיטת תל אביב, על הגג של הבניין למדעים מדויקים, יש לנו חיישן שקולט גלי רדיו מסופות רעמים שמתחוללות באזור שלנו, וגם באפריקה, בהודו, ואפילו בדרום אמריקה. הצלבת המידע מהתחנות השונות, מאפשרת קביעה מדויקת של המיקום והזמן של כל ברק, וכך מתקבלת מפה גלובלית של ברקים לאורך זמן."
באמצעות המודל האמפירי בדקו החוקרים את הקשר בין כמות והתפלגות סופות הרעמים לבין שינויים בטמפרטורה באזור האמזונס החל משנות ה-80. ניתוח סטטיסטי של הנתונים העלה ממצאים מפתיעים: על אף העלייה בטמפרטורה הנובעת מההתחממות הגלובלית, חלה ירידה של כ-8% בהיקף סופות הרעמים. החוקרים: "כשבדקנו לעומק את הממצאים הבלתי צפויים, גילינו שאזורי הירידה בסופות הרעמים חופפים במידה רבה לאזורים שבהם בוצעה פעילות נרחבת של בירוא יערות. זו הפעם הראשונה שהתגלה קשר בין סופות רעמים לבירוא יערות. לפי ההערכה שלנו, אובדן של כל מגטון פחמן - שווה ערך לכמיליון עצים גדולים שנכרתו, מביא לירידה של כ-10% במספר סופות הרעמים."
פרופ' פרייס מסכם: "במחקר זה בדקנו מגמות בסופות רעמים באגן האמזונס בעשורים האחרונים. ציפינו למצוא עלייה בכמות הסופות בעקבות ההתחממות הגלובלית, כפי שנצפה באזורים רבים בעולם, אך להפתעתנו מצאנו מגמה הפוכה: ירידה של 8% במהלך 40 שנה. בירור נוסף העלה שמרבית הירידה נצפתה בדיוק באזורים בהם יערות הגשם בוראו והוחלפו בחקלאות או בשימוש אחר של האדם. ניתן להסביר זאת בכך שבהיעדר היערות פחתה משמעותית הלחות באוויר, שהיא מקור האנרגיה והלחות להיווצרות סופות רעמים. התוצאה היא פחות סופות רעמים, פחות עננים, פחות גשם, וכתוצאה מכך גם פחות צמיחה של היער. כך נוצר תהליך של היזון חוזר שיכול לגרום להתייבשות היערות, דבר שעלול לפגוע משמעותית באפקטים החיוניים של 'הריאות של כדור הארץ' – ייצור חמצן וספיגת פחמן דו חמצני."

מחקר
עלייה במספר סופות הברקים עשויה להגדיל את כמות ענני הנוצה ולהגביר את תהליך התחממות כדור הארץ

מחקר חדש של אוניברסיטת תל אביב מצא קשר סטטיסטי מובהק בין סופות ברקים ברחבי העולם להיווצרותם של ענני נוצה (ענני צירוס), שעלולים להגביר את התחממות כדור הארץ. החוקרים: "ידוע שענני נוצה עשויים לגרום להתחממות כדור הארץ, ועם זאת קשה מאוד לעקוב אחריהם ולהשיג עבורם נתונים מדויקים. הממצאים שלנו, מצביעים על כך שעלייה במספר סופות הברקים ברחבי העולם, עשויה להגדיל מאוד את כמות ענני הנוצה ובכך להעצים את משבר האקלים."
המחקר נערך בהובלת פרופ' קולין פרייס מהחוג לגיאופיזיקה בבית הספר לסביבה ולמדעי כדור הארץ ע"ש פורטר באוניברסיטת תל אביב, בשיתוף עם חוקרים באוניברסיטת טריפורה בהודו. המאמר פורסם בכתב העת Geophysical Research Letters של האיחוד הגיאופיזי האמריקאי (AGU).
"לענני נוצה, אותם עננים קלילים שאנו רואים בשמיים, יש השפעה משמעותית על האקלים של כדור הארץ," מסביר פרופ' פרייס. "כמות גדולה של ענני נוצה עשויה לשמש כמעין שמיכה, שמגבירה את ההתחממות, בעוד שכאשר הכמות מעטה, החום עולה כלפי מעלה ומשתחרר אל מחוץ לאטמוספירה. מסיבה זו מגלים חוקרי האקלים עניין רב בענני הנוצה, ומנסים לנבא שינויים שעשויים להתחולל בהם - בעיקר בעקבות העלייה בגזי החממה והתחממות כדור הארץ. אך כאן אנו נתקלים בבעיה משמעותית, מכיוון שקשה מאוד להשיג נתונים מדויקים ומקיפים על ענני נוצה. הם דקים מאוד ולפעמים בלתי נראים לעין, גם ללוויינים בחלל, ובנוסף הם נמצאים באטמוספירה העליונה, הרחק מתחנות המדידה שעל הקרקע."
כדי לתת מענה לאתגר בחנו החוקרים אם ניתן להשתמש בסופות ברקים, שהמידע עליהן נגיש וזמין, כמנבא יעיל לכמות ענני הנוצה שנוצרים באטמוספירה. החוקרים מסבירים שברק נוצר כאשר שדה חשמלי עצום נפרק בבת אחת ומייצר טמפרטורה גבוהה מאוד, עד 30,000 מעלות צלסיוס, שגורמת להבזק האור העוצמתי המוכר לכולנו. כתוצאה מכך משדר הברק גלי אור וגלי רדיו הניתנים לקליטה גם במרחק של אלפי קילומטרים, וכך ניתן לעקוב אחרי הברקים ולמפות אותם – בזמן אמיתי ולאורך זמן.
במחקר הנוכחי הסתמכו החוקרים על נתוני ברקים שנאספו בכל העולם לאורך 6 שנים על ידי לוויין LIS-ISS של NASA הקולט את האור הנפלט מברקים. החוקרים בחנו את הנתונים הללו מול נתונים של ענני נוצה (המידע החלקי הקיים היום בשילוב עם מודלים המשלימים את התמונה), במטרה לבדוק אם קיים קשר בין מספר הברקים ביום, בחודש, או בשנה, לבין כמות ענני הנוצה שנוצרים באטמוספירה. הממצאים הצביעו על התאמה מובהקת סטטיסטית: ככל שיש יותר סופות רעמים יש יותר ענני נוצה. לדברי החוקרים, המשמעות היא שאכן ניתן להשתמש בברקים – שאותם קל לאתר ולמדוד, כמדד אמין לכמות ענני הנוצה באטמוספירה, היום ובעתיד.
פרופ' פרייס: "גילינו שסופות ברקים מהוות מנגנון מרכזי בהיווצרות ענני נוצה בעולם, ושמעקב אחר ברקים יכול להסביר יותר מ-70% מהשינויים בכמויות של ענני הנוצה בעולם. הסופות משמשות כמעין 'שואב אבק' ענק ששואב לחות מפני כדור הארץ, בעיקר מהימים ומהיערות, ונושא אותה לגובה רב. שם, בגובה של כ-10 ק"מ הופכת הלחות לגבישי קרח דקים שיוצרים את ענני הנוצה."
פרופ' פרייס מסכם: "במחקר שלנו מצאנו קשר סטטיסטי מובהק בין מספר סופות הברקים המתחוללות על פני כדור הארץ לבין כמות ענני הנוצה שנוצרים באטמוספירה ברמה הגלובלית. מודלים רבים צופים כיום ששינויי האקלים יביאו למגמה של עלייה בתופעת סופות הברקים בשנים הבאות, אם כי טרם נאספו די נתונים כדי לקבוע זאת בוודאות. על פי המחקר שלנו, אם ההשערות הללו נכונות, צפויה העלייה במספר סופות הברקים לגרום גם לעלייה בכמות ענני הנוצה, אשר כאמור מהווים מעין שמיכה אטמוספירית, ועלולים להגביר עוד יותר את תהליך התחממות כדור הארץ."

מחקר
בזאת איששו החוקרים תופעות מדעיות שנחזו עד כה רק באופן תיאורטי

חוקרים מאוניברסיטת תל אביב ומאוניברסיטאות בארה"ב ובגרמניה, הצליחו למדוד בפעם הראשונה מסלולי בוהם (Bohm trajectories) ואת הפוטנציאל הקוונטי (Quantum Potential) במערכת קלאסית, תופעות שנחזו עד היום באופן תיאורטי ונמדדו באופן חלקי בלבד. התגלית המדעית התאפשרה במסגרת מחקר שבחן את דינמיקת ההתפשטות של חבילות של גלי כבידה משטחיים על פני מים, על ידי מדידתם לאורך בריכת גלי מים באורך 18 מטרים. גלים אלה מקיימים את משוואת היסוד של תורת הקוונטים, משוואת שרדינגר, ולכן מאפשרים למדוד תופעות גליות המוכרות מתורת הקוונטים במערכת קלאסית.
צוות החוקרים כולל את מר גאורגי גרי רוזנמן, דוקטורנט מבית הספר לפיזיקה באוניברסיטת תל אביב, פרופ' דניס בונדר מאוניברסיטת טוליין שבארה"ב, פרופ׳ וולפגנג שלייך מאוניברסיטת אולם שבגרמניה, פרופ׳ לב שמר מבית הספר להנדסה מכנית מאוניברסיטת תל אביב ופרופ׳ עדי אריה מבית הספר להנדסת חשמל ומופקד הקתדרה לננו-פוטוניקה ע"ש מרקו ולוסי שאול. המחקר פורסם לאחרונה בכתב העת היוקרתי Physica Scripta.

איור 1 - חלק עליון: תיאור סכימטי של המערכת הניסיונית למדידת גלי כבידה משטחיים על פני מים וחילוץ מסלולי בוהם והפוטנציאל הקוונטי. חלק תחתון: (a) צילום חזית של הבריכה בה נוצרים הגלים. (b) מחוללי הגלים הנשלטים על ידי מחשב. (c) חיישנים המודדים את גובה פני המים.
תאוריית דה ברוגלי-בוהם (De Broglie–Bohm theory), הידועה גם בשם מכניקה בוהמית, מתארת את ההתפתחות של פונקציית גל של חלקיק קוונטי במרחב ובזמן על ידי סדרה של מסלולים מוגדרים (הקרויים מסלולי בוהם) שהחלקיק נע באחד מהם. מסלולים אלה נקבעים על ידי משוואת תנועה התלויה בפונקציית הגל ההתחלתית. באופן שקול, ניתן להגדיר פוטנציאל קוונטי שמגדיר את התפתחות פונקציית הגל. התאוריה נקראת על שמם של לואי דה ברוגלי (1892–1987) ודייוויד בוהם (1917–1992) והוצעה על ידם על מנת להסביר את התופעות הנמדדות בפיסיקה קוונטית.

איור 1 - ימין: מדידות ניסיוניות של ניסוי שני הסדקים ומסלולי בוהם שנמדדו (פסים שחורים). המימוש של הסדקים נעשה בתחום הזמן, על ידי יצירת שני פולסים של גלי כבידה משטחיים, בזמנים (t=-4, +4 sec). ניתן לראות את ההתפתחות של מסלולי בוהם לאורך בריכת הגלים (ציר X). יש אזורים שאף מסלול לא חוצה אותם, ועוצמת הגל שתימדד בהם תהיה אפס. הסיבה לכך היא שנוצרת באזורים אלה התאבכות הורסת. לעומתם, יש אזורים שבהם יש צפיפות גבוהה של מסלולי בוהם, ובהם עוצמת הגל מקסימלית (כתוצאה מהתאבכות בונה). איור 2 - שמאל: מראה את הפוטנציאל הקוונטי. הגל נע רק ב'עמקים' (כלומר באזורים שבהם הפוטנציאל נמוך) ולא מגיע ל'הרים' (כלומר לאזורים שבהם הפוטנציאל גבוה).
בעוד שתאוריית דה-ברוגלי-בוהם פותחה עבור תיאור של מערכת קוונטית, הניסוי שבוצע עוסק במערכת קלאסית של גלי כבידה משטחיים על פני מים, אך כאלו שמקיימים את משוואת שרדינגר. לפיכך, צוות החוקרים זיהה כי ניתן ליישם את תאוריית דה ברוגלי-בוהם כדי לבחון באופן נסיוני את מסלולי בוהם ואת הפוטנציאל הקוונטי, אבל בהתקן גדול שניתן לראותו בעין. בניסוי מיוצרים גלי כבידה משטחיים בבריכה באורך של 18 מטרים, שמתנהגים באופן דומה לגלי חומר זעירים בעולם הקוונטי וכך החוקרים הצליחו למדוד במערכת מקרוסקופית תופעות שנחזו במקור למערכות קוונטיות.
בפרט, ניתן לראות בניסוי שחזור מלא של מסלולי בוהם של הניסוי המפורסם של עקיפת חבילת גלים דרך שני סדקים. המימוש של הסדקים נעשה בתחום הזמן על ידי עירור שני פולסים של גלי כבידה משטחיים במישור הכניסה של בריכת הגלים, ולאחר מכן נמדדה ההתפתחות של פונקציית הגל לאורך הבריכה, וממנה נקבעו מסלולי בוהם והפוטנציאל הקוונטי. המערכת הניסיונית שימשה גם למדידת חבילות גלים אחרות כגון חבילת גלים הנוצרת מעקיפה של שלושה סדקים, וחבילת גל שצורתה פונקציית איירי (Airy). מעבר לאישוש התיאוריה של בוהם לגלים קוונטים ומסלולי בוהם, ניסויים אלו פותחים חלון חדש לקראת הבנת הדינמיקה של סוגים שונים של גלים קלאסיים, לרבות גלים אלקטרומגנטיים, פלזמה, אקוסטיים ועוד. מסלולי בוהם מאפשרים להמחיש בצורה ויזואלית כיצד גלים אלה מתפתחים במרחב ובזמן ונותנים הבנה אינטואיטיבית לתופעות של התאבכות בונה והורסת של גלים אלה.

מחקר
צוות בינלאומי, שכולל קבוצת חוקרים מאוניברסיטת תל אביב, זיהה חור שחור ראשון, Gaia BH1, שנמצא במרחק של 1500 שנות אור מכדור הארץ

החללית Gaia שוגרה ע"י סוכנות החלל האירופית ב-2013 ומאז היא מנטרת באופן קבוע את המיקום של למעלה ממיליארד כוכבים בגלקסיה שלנו בדיוק חסר תקדים. ארגון הכולל כמה מאות מדענים ברחבי אירופה (כולל ישראל), מעבד את הנתונים המגיעים מהחללית ומנגיש אותם לשימוש הקהילה המדעית כולה. אחד הצוותים, ובהם קבוצת מחקר של אוניברסיטת תל אביב בהובלתו של פרופ' (אמריטוס) צבי מזא"ה מבית הספר לפיזיקה ולאסטרונומיה, מתמקד במחקר של כוכבים כפולים המתגלים מתוך נתוני החללית. לאחרונה פרסם הארגון רשימה של יותר מרבע מיליון כוכבים כפולים שאחד מבני הזוג הוא חור שחור – אובייקט שמיימי מן הנדירים ביקום, החג סביבם, בהם חור שחור שנמצא במרחק 1500 שנות אור מכדור הארץ.
צוות החוקרים מאוניברסיטת תל אביב, שכולל גם את ד"ר סהר שחף (הנמצא כעת במכון וויצמן), ד"ר שמחון פייגלר וד"ר דולב בשי, פיתח טכניקה לזיהוי כוכבים כפולים שאחד מבני הזוג הוא חור שחור. קשה מאוד לגלות חורים שחורים, מפני שהאור איננו יכול להבקיע את כוח המשיכה החזק שבסביבתו של החור השחור. כאשר חור שחור "דומם" כזה נמצא במערכת זוגית עם כוכב רגיל, משתמשים בתנועת הכוכב הנראה כדי למדוד את המסה של בן הזוג הבלתי נראה ולהוכיח שזהו אכן חור שחור. בשנים האחרונות פורסמו מספר הצעות לזיהוי חורים שחורים דוממים במערכות זוגיות, אבל בכל המקרים התעוררו שאלות קשות שערערו את אמינות הזיהוי.
הנתונים של גאיה שפורסמו לאחרונה איפשרו לזהות מספר קטן של כוכבים שתנועתם על פני מישור השמיים מעידה על קיומו של חור שחור דומם כבן זוג. לפני חודשים אחדים גילה צוות בינלאומי, שכולל את קבוצת המחקר מאוניברסיטת תל אביב, חור שחור ראשון, Gaia BH1, שנמצא במרחק של 1500 שנות אור. תצפיות ייעודיות מן הקרקע שנערכו באינטנסיביות בחודשים האחרונים אישרו כעת את קיומו של Gaia BH2, חור שחור שני הנמצא במרחק של כ-4000 שנות אור. שני החורים השחורים כבדים (כל אחד) פי 10 מן השמש שלנו.
"זהו גילוי מרגש", אומר פרופ' צבי מזא"ה. "השילוב הראשון מסוגו בין התצפיות מן הקרקע, לבין נתוני החללית, מוכיח מעל לכל ספק שגילינו שני חורים שחורים דוממים. הקירבה היחסית שלהם אלינו מראה כי מספרם של החורים השחורים הדוממים בחלל הוא גדול, והנתונים של החללית הממשיכים לזרום יביאו לגילויים של אובייקטים רבים כאלה, כפי שאכן ציפו עבודות תיאורטיות שונות. אני גאה שקבוצת המחקר שלנו זכתה להשתתף בעיבוד הנתונים של גאיה, ואחר כך במעקב אחרי המועמדים שהתגלו, שילוב ראשון מסוגו שהביא לזיהויים של שני חורים שחורים קרובים יחסית. אני מקווה שהגילוי יוביל להבנה מעמיקה על אופן ההיוצרות של מערכת כפולות כאלה, תהליך שפרטיו אינם מובנים כרגע".

מחקר
התגלית עשויה לשמש ככלי פורץ דרך בעולמות הפקת האנרגיה סולארית, עיבוד מידע וכדומה

פוטונים הם חלקיקי אור הנעים בצורה חופשית ובמהירות עצומה של 300,000 ק"מ לשנייה. לפי תורת הקוונטים ניתן "לערבב" חומר עם פוטונים על ידי שימוש במבנים מלאכותיים וליצור יצור כלאיים הנקרא "פולריטון". לפני כעשור התגלה שניתן להשתמש בפולריטונים על מנת לשלוט בתכונות של חומרים ובתהליכים כימיים.
מחקר חדש באוניברסיטת תל אביב יצר מערכת הדמיה אולטרה-מהירה באמצעותה הצליחו לחזות בהתנהגות של חלקיקים הנקראים "פולריטונים" – חלקיקים אשר נוצרים מ"ערבוב" של אור וחומר. לראשונה הצליחו להסריט את החומרים הללו ולהבין את התנהגותם המיוחדת: ככל שהם מכילים יותר "אור" כך הם מהירים ויעילים יותר.
המחקר נערך בהובלת ד"ר טל שוורץ, ראש המעבדה לחקר ננואופטיקה מולקולרית, וד"ר באלה מוקונדהקומר במחלקה לכימיה פיזיקלית בפקולטה למדעים מדויקים ע"ש ריימונד ובברלי סאקלר, ופורסם בעיתון היוקרתי “Nature Materials”. במחקר השתתפו הסטודנטים אריה סימחוביץ' וגל סנדיק, ד"ר עדינה גולומבק וד"ר גיא אנקונינה.
החוקרים פיתחו מערכת אופטית ייחודית על מנת לחקור האם ניתן לנצל את הערבוב עם האור להגברת תהליכי הולכה אלקטרונית בחומרים, וגילו תכונה מעניינת: ככל שיש אחוז גבוה יותר של אור בפולריטון, כך תנועתו במרחב הופכת להיות יעילה ומסודרת יותר, אך מכיוון שעדיין יש לו אופי "חומרי", ניתן להשתמש בו לצורך תהליכים אלקטרונים בהתקנים שונים.
ד"ר שוורץ מסביר: "במערכת שבנינו, ישנו משטח לוכד פוטונים ועליו שכבת מולקולות. כאשר יורים קרן לייזר למשטח ניתן ליצור את אותם פולריטונים בנקודה ספציפית וכן לצפות בתנועתם על המשטח. עד כה, חוקרים צילמו בצורה סטטית את המתרחש, כך שהם יכלו לומר שיש תנועה במשטח אך לא היה בידם מידע נוסף לגבי אופן התנועה או מהירותה. במחקרנו, פיתחנו מערכת אופטית מיוחדת שאיפשרה לנו לצפות בתנועה באופן דינמי וליצור מעין סרט וידאו בקצב מהיר ביותר. לצורך ההשוואה, במצלמת וידאו רגילה רואים 30 תמונות בשנייה, ואצלנו יותר ממיליון בריבוע תמונות בשנייה. באמצעות כך הצלחנו למדוד בצורה ישירה את מהירות ההתקדמות של הפולריטונים, וכן לזהות לראשונה מעבר בין שני סוגי תנועה שונים: כאשר פולריטון מכיל מעט אור, טווח התנועה שלו אכן מוגבר בכמה סדרי גודל ביחס למצב הטבעי בחומר, אך הוא נע באופן המכונה 'תנועה דיפוסיבית', כלומר תנועה המלווה בפיזורים אקראיים המובילים לשינויים תכופים בכיוון ההתקדמות ולכן יעילות התנועה מוגבלת.
"מצד שני, כאשר הפולריטון מכיל כמות גבוהה של אור, הוא מצליח "להתגבר" על אותם פיזורים, כך שמופיעה תנועה המכונה 'תנועה בליסטית' - תנועה מסודרת במהירות קבועה, אשר מגיעה ל2/3 ממהירות האור. האופי המשולב של הפולריטונים מאפשר מצד אחד מהירות גבוהה ומעבר של מרחקים ארוכים פי מיליון מסקלת המרחק המולקולרית, תוך כדי איבודי אנרגיה פחותים, ומצד שני אינטראקציות אלקטרוניות המאפשרות שליטה והמרה של האור לאנרגיה האגורה בחומר".
"אנו מצפים להשפעה בתחומים שונים, למשל בתחום התאים הסולריים. שם, אנרגית השמש נבלעת באזור אחד בהתקן ולאחר מכן צריכה לעבור לאזור אחר שבו היא מומרת לאנרגיה חשמלית. בדרך כלל תהליך זה הוא איטי ומוגבל בטווח על פניו הוא מתרחש, דבר אשר פוגם ביעילות התא הסולרי. באמצעות פולריטונים ניתן יהיה להעביר את האנרגיה ביעילות רבה יותר ולנצל באופן מיטבי את אנרגיית השמש. דוגמה נוספת היא התקנים אלקטרואופטיים אשר משמשים לתקשורת אופטית ועיבוד מידע. שימוש בפולריטונים יכול להאיץ את קצבי העבודה ולהוריד באופן משמעותי את התנגדות החומרים המשמשים בהתקנים אלו, כך שנצטרך להשקיע פחות אנרגיה בהפעלתם".

מחקר
הבנה מעמיקה של התהליך יכולה לקדם את עולם הרפואה בטיפולי פוריות, מתן תרופות ועוד

תגלית חדשה באוניברסיטת תל אביב: חלבוני קרום התא החיוניים לאיחוי תאים 'אוהבים לנדוד' לאזורים בעלי עקמומיות גבוהה. החוקרים מסבירים כי כל התאים בגוף האדם עטופים בקרומים, שמפרידים בין תכולת התא לסביבה שלו. כמו כן, ישנם מקרים בהם מתבצע תהליך של איחוי בין תאים, למשל בהפריה של זרע וביצית. יחד עם זאת המנגנון שגורם לאיחוי התאים עדיין נותר כתעלומה מדעית. מחקר חדש באוניברסיטת תל אביב הצליח ליצור שימוש חדשני במערכת המדמה קרום תא (ממברנה) בעל עקמומיות. המערכת הניסיונית הזו מאפשרת לחקור את השפעת הצורה של הקרום המכיל חלבונים 'עקמומיים' על מיקום החלבונים ואיחוי קרומי תאים.
המחקר נערך בהובלת הדוקטורנט רביב דהרן, בהנחיית ד"ר רעיה סורקין מבית הספר לכימיה בפקולטה למדעים מדויקים ובשיתוף פעולה עם פרופ' מיכאל קוזלוב מאוניברסיטת תל אביב, וקבוצת חוקרים מאוניברסיטת ציגווה בסין. המחקר פורסם לאחרונה בכתב-העת היוקרתי PNAS.
ד"ר סורקין מסבירה: "איחוי ממברנות הוא תהליך חיוני בגופנו המתרחש בתהליכים שונים כגון מעבר אותות במוח, תהליכי הפריה ותקשורת בין תאים. הבנה מעמיקה יותר של התהליך יכולה לקדם את עולם הרפואה בטיפולי פוריות, מתן תרופות ועוד. במעבדה אנו מנסים להבין את ההיבט הכימי-פיזיקלי של תהליך זה. בתאים יש ממברנות דינמיות בצורות שונות. ישנן ממברנות עם עקמומיות מאוד גבוהה, ומכך עולה השאלה מדוע נדרשת עקמומיות כזאת? ככל הנראה הצורה העקמומית חשובה למגוון תהליכים כמו למשל תהליך האיחוי".
במסגרת המחקר החדש, החוקרים התמקדו בשני חלבונים הממוקמים על גבי ממברנות התאים. חלבון אחד נמצא על הביצית והוא קריטי בתהליכי ההפריה, והשני חיוני ליצירת בועיות המשמשות לתקשורת בין תאים. במעבדה יצרו החוקרים מערכת המאפשרת לבחון את ההשפעה של עקמומיות ומתח הממברנה על התארגנות ומיקום החלבונים. בהמשך, החוקרים יצרו בועיות ממברנות גדולות, כדי שיהיה קל להבחין בהשפעות השונות, וסימנו את החלבונים עם צבען ביולוגי. בשלב הבא הם השתמשו במכשיר לכידה אופטית, המכונה מלקחיים אופטיים, שבעזרתו ניתן לבצע מניפולציות לחלקיקים מיקרוסקופיים.
החוקרים מציינים כי מדובר בטכנולוגיה שמאפשרת להחזיק ולהזיז חלקיקים בעזרת אור. בעזרת כדור זכוכית קטן המוחזק במלכודת האופטית ניתן למשוך מהבועית צינוריות ממברנה דקות, ובכך לדמות תהליכים ביולוגיים שבהם צינוריות כאלה נוצרות, כפי שקורה בפני השטח של הביצית. החוקרים שילבו את המלקחיים האופטיים עם מכשיר נוסף שבאמצעותו ניתן לשאוב חלק מהממברנה, דבר המאפשר שליטה בעקמומיות ובמתח שלה.
ד"ר סורקין: "באמצעות המערך הזה הצלחנו להוכיח שהחלבונים הללו 'אוהבים לנדוד' לאזורים בעלי עקמומיות גבוהה. בעבודות קודמות נמצא שעכברה שבה החלבון הזה חסר תהיה עקרה. זאת אומרת שלצורה העקמומית של קרום הביצית ולנדידת החלבון לאזור הזה יש חשיבות גדולה בתהליך ההפריה. תגלית זו תאפשר בעתיד לפתח טיפולי פוריות או אמצעי מניעה חדשים.
אנו מאמינים שמחקר רב תחומי הוא המפתח להבנת תהליכים ביולוגיים שחשובים לבריאות ואיכות החיים שלנו. ישנה אמירה מפורסמת של ריצ'ארד פיינמן, "מה שאני לא יכול ליצור, אני לא יכול להבין". זו הגישה שלנו במעבדה: אנחנו רוצים לדמות תהליכים ממברנליים מהמרכיבים הכי בסיסיים שדרושים למנגנונים ביולוגיים ההכרחיים לחיים כמו הפריה או תקשורת בין תאים. על ידי שליטה מדויקת במאפייני התהליך כמו הצורה ומתח הפנים של הממברנה, נוכל להבין את המנגנונים ולטפל במצבים פתולוגים. על ידי כך אנו מקווים לתרום לשיפור הבריאות ואיכות החיים".

מחקר
מחקר של אוניברסיטת תל אביב חושף סולם אטומי ייחודי של פוטנציאלים חשמליים

מחקר חדש של אוניברסיטת תל אביב חושף מערכת גבישים דו-ממדית, המאפשרת שליטה ייחודית במטען החשמלי שלה באמצעות החלקה בין שכבות אטומיות. המערכת החדשה יוצרת שלבי סולם בעובי אטומי של פוטנציאלים חשמליים נפרדים ומוגדרים היטב, וייתכנו לה שלל יישומים בתעשייה בכלל ובטכנולוגיות מידע בפרט.
המחקר נערך בהובלת צוות החוקרים: ד"ר סווארופ דב, סטודנט המחקר נועם ראב, פרופ' משה גולדשטיין וד"ר משה בן שלום, מבית הספר לפיזיקה באוניברסיטת תל אביב, ד"ר וואי כאו, פרופ' עודד הוד ופרופ' מיכאל אורבך מבית הספר לכימיה באוניברסיטת תל אביב, ופרופ' ליאור קרוניק ממכון ויצמן למדע. תוצאות המחקר פורסמו בכתב העת היוקרתי Nature.
ד"ר משה בן שלום, ראש המעבדה לחומרים קוונטים שכבתיים בבית הספר לפיזיקה מסביר: "אנחנו סקרנים מאוד לגלות איך אטומים מחליטים להסתדר בחומר, איך האלקטרונים בוחרים להתערבב ביניהם, ואיך אפשר לתמרן את הסדר האטומי והמטען החשמלי מבחוץ. קשה לענות על השאלות האלה בגלל הכמות הגדולה של האטומים והאלקטרונים אפילו בהתקנים המזעריים של היום. אחד הטריקים הוא לחקור גבישים, שכן האטומים שלהם מסודרים במבנה מחזורי, כך שהמידע על כל המערכת נקבע על ידי התכונות של התא המחזורי האחד – שכולל מספר בודד של אטומים ואלקטרונים. ועדיין קשה לנו להבין ולחזות את הסדר שלהם, בגלל שהאלקטרונים נפרסים בו-זמנית על פני כל האטומים והתכונות של המערכת הקוואנטית נקבעות על ידי כל החלקיקים יחד ויחסי הגומלין שביניהם".
דרך אחת לגלות את סדר האטומים ואת התפלגות המטען החשמלי היא לשבור את הסימטריה של המבנה, כך שייווצר שדה חשמלי פנימי קבוע בגביש. גבישים אלו נקראים "פולאריים" או מקוטבים. ב-2020 יצרה המעבדה של ד"ר בן שלום גביש מקוטב חדש על ידי הדבקה של שתי שכבות זהות – כאשר כל שכבה היא בעובי אטום בודד. לעומת הגבישים הסימטריים שגדלים בטבע בהם כל שכבה חדשה מסתובבת, כדי למקם אטומים מסוג אחד בדיוק מעל לאטומים מסוג שני, החוקרים הדביקו את זוג השכבות ללא הסיבוב – וכך גרמו להחלקה זעירה בין השכבות ששוברת את הסימטריה, גורמת לדילוג של האלקטרונים משכבה אחת לאחרת, ויוצרת קיטוב חשמלי פנימי. בשלב שני גילו החוקרים שאפשר להחליק בין השכבות קדימה ואחורה וכך למתג את הקיטוב החשמלי באמצעות שדה חשמלי חיצוני (ראו איור). לתופעה הם קראו SlideTronics, "החלקטרוניקה".
"החלקה וטיפוס בין קיטובים חשמליים": מבנה הגביש המחזורי מכיל זוג אטומים במרווחים קבועים בכל שכבה אופקית. ניתן להחליק כל שכבה נוספת ימינה או שמאלה במישור האופקי כדי למקם אטום כחול בדיוק מעל אטום אדום או להפך ובכך להקפיץ אלקטרונים עם מטען חשמלי מעלה או מטה בין השכבות. שלא כמו בגבישים מקוטבים המוכרים עד כה, הפוטנציאל החשמלי במערכת החדשה משתנה בערך קבוע ומוגדר היטב בין כל שלב ושלב. ניתן לטפס בצורה נשלטת בין כל האפשרויות השונות, כלומר ניתן למתג בין יחידות המידע באותו גביש בניגוד לזוג מצבים בטכנולוגיות קודמות.
ד"ר בן שלום מוסיף: "הגביש המקוטב החדש שגילינו, בעובי שני אטומים בלבד, הוא הדק ביותר האפשרי ועשוי לשמש בטכנולוגיות מידע מבוססות מנהור קוואנטי. אנו מפתחים יחידות מנהור כאלו בחברת Slide-Tro LTD שהוקמה ע"י האוניברסיטה ומשקיע חיצוני ופועלת כעת מתחת לרדאר, ומאמינים כי התופעה מאפשרת בסיס רחב להתקנים אלקטרוניים חדשניים החל מפתרונות להפחתת הספק ועד ליחידות זיכרון משופרות. בהיבטי מחקר יסודי, התגלית העלתה בנו מייד שאלות חדשות: איך יסתדר המטען? ומה יהיה גודל הקיטוב? אם נדביק שכבות נוספות למערכת בצורה שתשבור או תשמור את הסימטריה? במילים אחרות, במקום לרדד את עובי המערכת על ידי איכול שכבות מהגביש, כפי שנעשה עד כה, יכולנו כעת לערום גבישים מקוטבים שכבה אחר שכבה זו מעל זו, ובו בזמן למדוד את גודל הקיטוב והפוטנציאל החשמלי שנוצר בכל שלב בסולם השכבות".
בניסוי הנוכחי הצליחו החוקרים להשוות אזורים סמוכים בעלי מספר שכבות שונה, שנערמו יחד עם החלקות בכיוונים שונים היוצרים קיטובים בגדלים שונים. לדוגמה, עבור ארבע שכבות (ושלושה משטחי מגע מקוטבים) יש ארבע אפשרויות לסדר את כיוון שלושת הקיטובים: כולם מצביעים למעלה ↑↑↑, שניים למעלה ואחד למטה ↑↑↓, אחד למעלה ושניים למטה ↑↓↓ או שלושה למטה ↓↓↓.
"לשמחתנו גילינו סולם של קיטובים מוגדרים היטב המופרדים ביניהם בערכי קיטוב אחידים, כך שכל שלב בסולם יכול לשמש כיחידת מידע נפרדת", אומר נועם ראב, סטודנט המחקר שמדד את הגבישים. "זוהי כאמור תגובה שונה מאוד מזו של הגבישים המוכרים עד כה, שבהם תגובת פני השטח לקיטוב היא משמעותית והחלפת הקיטוב אפשרית כיחידה אחת בלבד – כלומר שינוי הקיטוב בשכבה אחת משנה את מטען השכבות כולן".
ד"ר סווארופ דב, כותב מוביל במאמר, מדגיש: "הצלחנו גם לטעון את השכבות באלקטרון נוסף לכל מאה אטומים בערך ולשפר בכך משמעותית את הולכת הגבישים במישור מבלי לפגוע בקיטוב הניצב". תוך הסתייעות בחישובים תיאורטיים על סמך עקרונות היסוד של המכניקה הקוואנטית, גילינו שאפשר לתכנן ולבנות צירופי גבישים שכבתיים נוספים באמצעות החלקה יחסית בין השכבות, וכי המידע אודות הקיטוב והסימטריה של המערכת נותר כלוא בין השכבות ומוגן מהסביבה," אומר ד"ר וואי כאו, כותב ראשי נוסף שערך את החישובים. "למעשה ה'החלקטרוניקה' עזרה לנו לגלות את סולם הקיטובים הדק ביותר שאפשר לבנות," מסכם ד"ר בן שלום. "המשך מתבקש למחקר עתידי הוא תמרון סדרים אלקטרוניים נוספים, כגון קיטוב מגנטי ומוליכות-על באמצעות החלקות דומות בין סימטריות גבישיות שונות".

מחקר
חוקרים מצאו שיטה חדשה לעקם ולפצל קרני אור בצבעים שונים על ידי תהליך אופטי לא ליניארי

לחומרים שונים יש דרכים שונות להקדם במרחב. קרני אור למשל מתקדמות בתווך אחיד כגון אוויר או זכוכית בקווים ישרים, בעוד שאת מסלולם של חלקיקים טעונים כמו אלקטרונים אפשר לעקם על ידי הפעלת שדה חשמלי או מגנטי. בניסוי שנערך לאחרונה באוניברסיטת תל אביב ופורסם בכתב העת היוקרתי Nature Photonics, הראו החוקרים כי ניתן לפצל ולעקם גם את המסלול של אלומות אור באמצעות שימוש באלומת אור נוספת ובגביש לא ליניארי.
צוות החוקרים מהפקולטה להנדסה ע"ש איבי ואלדר פליישמן ומבית הספר לפיזיקה ולאסטרונומיה בפקולטה למדעים מדויקים ע"ש ריימונד ובברלי סאקלר, כולל את הדוקטורנטים אופיר ישרים (שהוביל את הניסוי), ואביב קרניאלי, ד"ר סטיבן ג׳אקל, ד"ר ג׳וזפה די דומניקו, וד"ר סיוון טרכטנברג-מילס, תחת הנחייתו של פרופ׳ עדי אריה, מופקד הקתדרה ע"ש מרקו ולוסי שאול.
הניסוי שבוצע מבוסס על אנלוגיה בתחום האופטי לאחד מניסויי המפתח של תורת הקוונטים, ניסוי שטרן-גרלך אשר פורסם בדיוק לפני 100 שנה, בשנת 1922. החוקרים הגרמניים אוטו שטרן ו-וולטר גרלך שלחו אטומי כסף דרך שדה מגנטי שמשתנה במרחב, והבחינו כי כתוצאה מכך מתקבל פיצול של אלומת האטומים: מחצית מהאטומים סטו לכיוון אחד, ומחציתם השני לכיוון הנגדי. הסיבה לכך היא שלאלקטרוני הערכיות של הכסף יש תכונה הקרויה ספין, אשר גם קובעת את המומנט המגנטי של כל אלקטרון. השדה המגנטי החיצוני מפעיל כוח על האלקטרון, אשר תלוי בכיוון המומנט המגנטי של אותו אלקטרון. בניסוי התברר כי ערך הספין שנמדד יכול לקבל רק שני ערכים אפשריים (שנקרא להם "מעלה" ו"מטה"), ולכן אלומת האטומים מתפצלת לשתי זוויות בלבד.
כעת, 100 שנים לאחר הניסוי המקורי, ביצעו החוקרים ניסוי מקביל באופטיקה, בו קרני אור פוצלו באמצעות אינטראקציה לא-לינארית (אינטראקציה בה קרני אור יכולות להשפיע אחת על השנייה). במסגרת הניסוי, השתמש צוות המחקר בגבישים אופטיים לא ליניאריים. לטענתם, לרוב משתמשים בגבישים אלה כדי לבצע המרות תדר, כלומר קרן לייזר באורך גל (צבע) מסוים תהפוך לקרן באורך גל אחר.
"בניסוי זה שלחנו שלוש אלומות אור בארכי גל שונים לגביש לא לינארי, שלמען הנוחות נסמן אותם בצורה סימבולית כאלומות בצבע כחול, ירוק ואדום. האלומה הירוקה היא בעוצמה חזקה בהרבה מהאלומות האחרות, ובאמצעות התהליך הלא ליניארי היא מאפשרת המרת אנרגיה מהאלומה הכחולה לאדומה או להיפך. בניסוי שבוצע, נשלחה אלומה ירוקה רחבה, שלה עוצמה מקסימלית במרכזה, והיא יורדת לאפס בשולי האלומה. כך יוצרים אינטראקציה שמשתנה במרחב - אינטראקציה חזקה במרכז האלומה, ואינטראקציה חלשה בשוליה", מסביר פרופ' עדי אריה.
"אלומה זו ממלאת תפקיד אנלוגי לשדה המגנטי המשתנה במרחב בניסוי שטרן-גרלך המקורי. אם נשלח אלומה כחולה לאזור המואר על ידי שיפולי האלומה הירוקה, נקבל פיצול לשתי אלומות הנעות בזויות שונות, שבכל אחת מהן יש כעת אור כחול ואור אדום. באחת האלומות האור הכחול והאור האדום הם בעלי אותו מופע (פאזה), והיא נעה ימינה, ובאלומה השנייה הן במופע הפוך והיא נעה שמאלה. שתי אלומות אלה הן האנלוג של הספין של האלקטרון בניסוי שטרן גרלך המקורי", הוא מוסיף.
לדבריו, אפשר גם להגדיל או להקטין את זווית הפיצול על ידי הגדלה או הקטנה של עוצמת הלייזר הירוק. "לעומת זאת, כאשר הוכנסה אלומה משולבת של כחול ואדום, לא ניתן היה לראות פיצול היות והקרן סטתה לכיוון אחד בלבד, כתלות במופע בין הצבעים שהוכנסו. ניסוי זה מקביל למקרה שבו מכניסים אטומי כסף בעלי ספין ״מעלה״ או ״מטה״ בלבד בניסוי שטרן גרלך".
לסיכום, החוקרים מסבירים כי פיצול מרחבי של אורכי גל אינו דבר חדש. מנסרה, למשל, מאפשרת פיצול מרחבי של אורכי גל לזוויות שונות, ואולם פיצול זה הוא קבוע ומפריד כל צבע לכיוון אחד. בניסוי שהודגם במסגרת מחקר זה, הפיצול מאפשר להשתמש בשילוב אורכי גל, כתלות במופע ביניהם, ולשלוט בזווית הפיצול על ידי אלומת אור נוספת. לתופעה זו יש יישומים פוטנציאלים בתחומים של עיבוד אותות ותקשורת אופטית, תקשורת קוונטית, חישוב קוונטי, חישה מדויקת ועוד. החוקרים מאמינים שהניסוי יהווה את נקודת הפתיחה לניסויים נוספים שמנצלים את ההקבלה בין מערכות של אלקטרונים בשדה מגנטי לבין מערכות אופטיות.

צוות המחקר

מחקר
חוקרים שיפרו והוזילו את תהליך הפקת "הפולימר הירוק" שעשוי להפחית את הזיהום של תעשיית הפלסטיק

חומרים פלסטיים הם זולים לייצור ויש להם מגוון תכונות שעונות על הצרכים שלנו. לכן, חלק ניכר מהמוצרים בהם אנו נתקלים בחיי היום-יום מורכבים מחומרים אלו. אבל החיסרון העיקרי שכולנו כבר מודעים אליו הוא שחומרים פלסטיים מסורתיים כגון פוליאתילן או פוליסטירן מזיקים לסביבה. איך זה בא לידי ביטוי? קודם כל, הם נגזרים מנפט, שהוא משאב מתכלה (ההיפך ממשאב מתחדש), ושנית - קצב הפירוק שלהם בסיום השימוש הוא איטי במיוחד ועשוי להמשך אפילו מאות שנים. הבעיה מחמירה שבעתיים כאשר מדובר במוצרי הפלסטיק שמיועדים ל״שימוש יחיד״, כגון אריזות מזון. לכן, מדעניות ומדענים בכל העולם מנסים למצוא פתרונות שיצמצמו את השימוש בחומרים האלה. לראשונה, צוות חוקרים מאוניברסיטת תל אביב הצליח לייצר גרסה משופרת של פלסטיק ידידותי לסביבה בשם פולי (חומצה לקטית). החוקרים מעריכים שהפיתוח החדש יסייע לתעשייה להגביר את השימוש בפולימרים הירוקים על חשבון אלו המסורתיים, ובכך להפחית את טביעת הרגל האקולוגית של תעשיית הפלסטיק.
המחקר נערך בהובלת הדוקטורנט רמי חדור בהנחיית פרופ' משה קול, ראש בית הספר הנכנס לכימיה בפקולטה למדעים מדויקים ע"ש סאקלר, ראש הקתדרה לכימיה ירוקה ע״ש ברונו לנדסברג, וחבר המועצה הירוקה של אוניברסיטת תל אביב, ובשיתוף ד״ר מיכאל שוסטר מחברת כרמל אולפינים ופרופ׳ וינצ׳נזו ונדיטו מאוניברסיטת סלרנו באיטליה. הוא נערך בתמיכת משרד החדשנות, המדע והטכנולוגיה ובתמיכת הקרן הלאומית למדע ופורסם בכתב-העת היוקרתי Angewandte Chemie והובלט כמאמר VIP.
פולימרים, או חומרים פלסטיים, הם חומרים כימיים בעלי מבנה של שרשראות-ענק. תכונותיהם נקבעות על פי אופי החוליות בשרשרת והאופן בו הן מסודרות. החוקרים מסבירים כי מבין כל החלופות האפשריות, הפלסטיק פולי (חומצה לקטית) נחשב לירוק ביותר, מפני שחומר הגלם לייצורו (החוליות), נגזר ממשאבים מתחדשים, בהם גידולים חקלאיים כגון תירס, ומפני שקצב פירוקו בסביבה מבוקרת לאחר השימוש הוא מהיר. עם זאת, מחירו יחסית לפולימרים המסורתיים הוא גבוה ולכן השימוש בו הוא עדיין מוגבל. הפיתוח של המחקר העדכני צפוי להוזיל את ייצורו.
תהליך הכנת הפלסטיק דורש שימוש בזרז, מעין מכונת אריגה כימית שמחברת את החוליות ליצירת שרשראות הפולימר. בתהליך הכנת חומר הגלם, מתקבלות חוליות מסוגים שונים. הזרז התעשייתי איננו מסוגל להבחין בין סוגי החוליות, והשרשראות שהוא יוצר מכילות רצף אקראי של החוליות. בהתאמה, הפלסטיק המתקבל הוא בעל חוזק מופחת. כדי לקבל תכונות רצויות של הפלסטיק, יש לכן לטהר את חומר הגלם על ידי הפרדת החוליות לסוגיהן השונים עוד לפני שלב הפילמור, דבר שמייקר את תהליך הייצור.
בלב התגלית הנוכחית, נמצאים זרזים חדישים שמסוגלים להבחין בין סוגי החוליות השונים. בהתאמה, מרוכזות החוליות השונות באזורים שונים של השרשראות, והפולימר המתקבל הוא גבישי ובעל חוזק מוגבר, גם כאשר הוא מיוצר מחומר גלם בלתי טהור. השימוש בזרזים אלה מייתר את הצורך בטיהור חומר הגלם ועשוי להוזיל את הייצור. אותה יכולת הבחנה של הזרזים החדישים מתקיימת גם בתנאי ייצור תעשייתיים קיצוניים, והזרזים הם יעילים במיוחד.
"אנחנו מקווים שבעזרת הטכנולוגיה שלנו נוכל להשפיע, כבר בעתיד הנראה לעין, על סוגי החומרים הפלסטיים העתידיים ועל אופן ייצורם, בתקווה להפחית בהקדם את טביעת הרגל הפחמנית של התעשייה העולמית"
לשאלה מתי אפשר יהיה להתחיל ליישם את השימוש בשיטה החדשנית עונה פרופ' קול כי "הדרך בין פיתוח מעבדתי ליישום תעשייתי היא כרגיל ארוכה. החומרים והטכנולוגיה החדשים צריכים להראות יתרונות מהותיים יחסית לחומרים והטכנולוגיה הקיימים. לדוגמא, הוזלה קלה של התהליך לא תצדיק בניית מפעל חדש בהשקעה של עשרות מיליוני דולרים. התהליך הקיים סובל ממספר בעיות, בהן שימוש בזרז המבוסס על בדיל וצורך בטיהור יקר של חומר הגלם. להערכתי, ההמצאה שלנו עשויה להתגבר על בעיות אלה. כמובן שצריך להיות שותף תעשייתי אשר יהיה מוכן להשקיע כסף, זמן ומאמצים בשיתוף פעולה, כדי בסופו הטכנולוגיה תהיה בשלה ליישום".

מתכלות לאחר מאות שנים. אריזות מזון ל"שימוש יחיד"
לשאלה עד כמה תהיה להמצאה החדשה השפעה על חיינו ועל חיי ילדינו יש לפרופ' קול תשובה מורכבת. "הפולימר שלנו מהווה חלק קטן מאד מנפח הפולימרים המיוצרים כיום. כמה קטן? פרומיל, כלומר אלפית. עם זאת, קצב הגידול בייצורו עולה מהר מאד ומדי 4-3 שנים כמותו מוכפלת, וזאת על חשבון פולימרים מסורתיים מזיקים יותר. אנחנו מקווים שאם הטכנולוגיה שלנו תוכל להוזיל את ייצורו, ואולי אף לשפר את תכונותיו - הייצור יוכל להתרחב מהר אף יותר, ובכך להשפיע, כבר בעתיד הנראה לעין, על סוגי החומרים הפלסטיים העתידיים ועל אופן ייצורם, בתקווה להפחית בהקדם את טביעת הרגל הפחמנית של התעשייה העולמית. עם זאת, חייבים להדגיש - לא ניתן יהיה להחליף את הפולימרים המסורתיים הקיימים במרבית היישומים, ובייחוד בתחום אריזות המזון", הוא מסכם.
רמות - חברת המסחור של אוניברסיטת תל אביב, הגישה כמה בקשות פטנט המגנות על הטכנולוגיה ויישומה. "אנו מאמינים בפוטנציאל המסחרי הרחב של הטכנולוגיה ומברכים את פרופ' משה קול, דר' רמי חדור ושותפיהם למחקר על תגלית פורצת דרך, המספקת מענה איכותי ויעיל לבעיה גלובלית ובוערת זו", אומרת קרן פרימור כהן, מנכ"לית רמות.